Int, J. Solids Structures Vol. 20, No. 11/12. pp. 10491077, 1984 0020-7683/84  $3.00 + .00
Printed in the U.S.A. Pergamon Press Lid.

BIAXIAL ISOTROPIC STOCHASTIC VISCO-ELASTIC
CREEP

OvE DITLEVSEN
Technical University of Denmark, Department of Structural Engincering, Building 118, DK 2800 Lyngby.
Denmark

(Received | September 1982; in revised form 12 December 1983)

Abstract—This is second part of a paper dealing with the formulation of constitutive equations
for statistically isotropic multi-axial visco-elastic stochastic creep in terms of a second moment
whitc noise field model. Herein the biaxial linearized model is studied. After an extensive
retrospeclive introduction recapitulating the basic concepts, the paper presents the solution to
the spatial covariance structure of a stress field history which is homogeneous in the mean.
Results for the corresponding strain field are also presented. It turns out to be necessary to let
the spatial second moment white noise character of the strain tensor field history for given
deterministic stress tensor history be approached through a sequence of genuine covariance
functions corresponding to isotropic random fields. In the limit the variances of both stress and
strain become infinite. Interesting asymptotic results show up in this connection.

The appendices give some useful mathematical results concerning Fourier transforms related
to the Laplace operator and covariance functions of isotropic random fields.

RETROSPECTIVE INTRODUCTION

The problem presentation in this introduction is related to papers on concrete creep.
However, the considered stochastic model is of a general type that may be applicable
to several materials.

Uniaxial creep

Modelling of concrete creep as a stochastic process seems to appear for the first
time in a paper by Benjamin et al. [2]. The basic ideas of this pioneering paper was
continued several years later for application on a more restricted problem by Cinlar
et al. [3]. Their considerations solely deal with basic creep, i.e. creep that is not ac-
companied by moisture exchange, of 4 macroscopically homogeneous cylinder, and
only creep under time-constant homogeneous uniaxial stress and temperature is con-
sidered.

Cinlar er al. argue that the creep function in the low stress domain is a stochastic
process with nonnegative independent increments with respect to stress level and time.
The increments with respect to the stress parameter are assumed to be stationary.
Furthermore the process of displacements of cross sections along the cylinder is as-
sumed to be a process with independent and stationary increments. These assumptions
are also the basis for two recent papers by the writer [5, 6] and the present paper. The
assumptions are of a general nature as compared to a further assumption introduced
by Cinlar et al. They assume that basic creep is a local gamma process in order to be
able to define an explicit distribution family for the stochastic creep function process.
However, an assumption of this type is not needed if interest is focused solely on the
second moment properties of the process.

For the purpose of first and second moment calculation the increment of any process
X(t) with uncorrelated increments (independent increments = uncorrelated incre-
ments) may be written formally as an integral

4
X() — X(s) = f W(r) dv 1))
in which W(s) is a mathematical idealization called a ‘‘second moment white noise

process”’ (or ‘‘wide sense white noise process'’). Within the concept of mean squarc
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convergence ([7], p. 277) the integral makes sense if there is given a mean value function
m(t), i.e. ‘

E[W(®)] = ml(7) (2)
and a nonnegative function (1) such that
Cov[W(T), W(8)] = c(r) (0 — 1) 3)

in which 8(:) is the Dirac delta function. The value ¢(7) is called the intensity of the
white noise to time 7. The usual rules of second moment calculus for processes then
apply to give the mean increment

ElX(1) - X(5)] = J:l m(r) dr (4)

and the covariance

CovlX(t) — X(5), X(v) — X(u)] = f: ﬁv Cov[W(7), W(8)] dr de

J; (1) Lﬁ 50 — 1) do dr = fl (1) 1y (1) d7 )

It

min{s,}
f c(t) dv = Var[X(min {¢, v}) — X(max {s, u})]

max{s,u}

for max {s, 4} = min {1, v}, and 0 otherwise. The function 1,,., (1) is the indicator
function for the interval Ju, v[, i.e. it is 1 if T € Ju, v| and 0 otherwise.

On this level of modelling the sample function behavior of X(¢) is irrelevant except
that a requirement that X(¢) has nonnegative increments implies that the mean value
function m(t) must be nonnegative.

Remark 1. White noise is most often defined to be Gaussian in the sense that X(1) is a Gaussian process
with independent increments. However, this is not a process with nonnegative increments and it is therefore
not applicable as a model for stochastic creep. For this purpose the white noise must be nonnegative. It can
be constructed by limit passage of a sequence of stationary lognormal processes obtained as exponentials
of a sequence of stationary Gaussian processes that approaches Gaussian white noise. The resulting process
with independent increments defined by use of eqn (1) is distributionally very complicated. Another much
simpler type of nonnegative white noise is obtained by letting the increments of X(¢) be gamma distributed.
This is used by Cinlar ef /. [3]. To emphasize that distributional assumptions and detailed sample function
behavior is of no concern for the pure second moment calculus we use the terminology **second moment
white noise process’ noting that this concept encompasses nonnegative white noise processes.

The advantage of expressing a process with uncorrelated increments as an integral
of a white noise process becomes more obvious when generalizing to several param-
eters. For the uniaxial creep case the writer [5] has modelled the strain e(r, ¢) at the
point r = (x, y, z) to time ¢ by the formal integral

t o(r.7) + dolr.7)
er, 1) = f f S, t, 7, u) du (6)
=0 Julr.7)

in which S(r, ¢, 7, u) is a second moment white noise process with respect to the
parameters r, T and u. The parameter 7 is the time of applying the stress increment
do(r, 7) at the place r, and u is the stress level parameter. Equations (2) and (3) simply
generalize to

E[S(r, ¢, 7, w)] = K(t, 7) @)
Cov[S(ry, ti, 71, 1), S(r2, 12, T2, 42)]

= c(ti, t2, 71) 812 — 71) Bz ~ w1} 8(r2 — ry) (8)



Biaxiul isotropic stochastic visco-clastic creep 1051

in which K(t, 7} and c(t,, t3, 7) are nonnegative functions, and 8(r> — ry) = d(x; —
xi) 8(y2 = y1) 8za — ).

The general assumptions of Cinlar et al. concerning the stochastic strain variation
with respect to the length parameter and the stress level (i.e. their nondistributional
assumptions) are in gencralized form the sole basis for cgn (6). The genceralization is
simply to a beam-column type of specimen subjected to an arbitrary local stress history
allowing for considering any nonhomogeneous uniaxial stress field history in the spec-

imen. Using the same principles of calculation as demonstrated by eqns (4) and (5)
gives {5]

Elete, 0] = [ K(t,7) do 0, 7) ©
Covle(ry, 5), €(rz, )] = 8(r; — 1)) f io (s, t,7) | do (ry, 7) | (10)

for s = ¢. Note that the variance is nondecreasing since it is dependent on the stress
increment solely through its absolute value. The mean decreases when the stress in-
crement is negative, of course.

Equation (6) is in its formulation not restricted to the assumption that the strain
process is a process with uncorrelated increments with respect to time ¢. If we impose
this restriction assumed by Cinlar et al., we may write

S(r. 7. 0) = fg Wir. 5, 7, u) ds (1

in which W(r, 1, 7, ) is second moment white noise with respect to all parameters. Its
mean and intensity arc given by nonncgative functions (2, 1) and cw(7, 1) respectively.
The implication is that

K(t, 1) = j " k(s, 1) ds (12)

and that the function ¢{s, ¢, 1) is only a function of 7 and the smallest of s and 1, i.c.
c(s, 1, 1) = cg{min {s, 1}, 1) where

cs(t, 1) = f: cwlis, 7) ds. (13)

The question of restricting S{r, ¢, 7, #) to be of the form as in eqn (11) is somewhat
controversial. The literature shows no general agreement on this. Benjamin ef al. [2]
assume that there are at least two independent stochastic creep components, viscous
creep and delayed elasticity. This assumption is in line with the widely used separation
into components in deterministic modelling of concrete creep. The separation is ques-
tioned by Bazant [1] and it is not made in the paper by Cinlar, Bazant and Osman [3].
Only the dominating viscous part is by Benjamin ez al. modelled in terms of a process
with independent increments. The delayed elasticity part is modelled as a Markov birth
(or death) process which, however, is not a process with independent (or uncorrelated)
increments. On the other hand, the delayed elasticity model of Benjamin er al. con-
tributes to the total variance in a transient way, i.e. it vanishes asymptotically after a
certain growth time. Thus it may be neglected without causing any essential error in
the long term variance,

Exampie 1. It may be illustrative to go through an elementary alternative derivation of the model of Cinlar
el al. Let g be a nonnegative function such that

G(a)=[g(y)dy<m for 5>0 (14)
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and G(0) = =. Assume that micro creep events take place within a unit length of the cylinder and within
the.time interval [s. t] as a Poisson process with intensity « G(8b) do. where a, b, and b are positive constants,
while do is the stress increment applied at time =. In order to simplify writing we put de to the stress unit
in the following calculations. Assume that the ith creep event after time s = T causes a random strain Y; with
density function

(15)
Let N be the number of creep events occurring in the time interval [s. 7). Then the strain increment is
er) —els) = Y+ Ya+ o 4+ Fn (16)

with conditional mean Ele() — e(s) | N] = N E[Y] and variance Varle(t) - €(s) | N] = N Var{ Y]. Thus by
the total representation theorem [7, p. 56]

Ele(t) — e(s)] = E[NTE[Y] = a G@&b) E(Y] (1 — ) (17}
Varle(1) — e(s)] = Var[N] E|Y]? + E[N] Var |Y] (18)
= a G&h) EIY (1 - 5).
It follows from egn (15) that
Gidb Y 4
( )E[Y]=;J;"Ag(x)dxxz (19)
by EIYY = — [ 5
Gl )1;|y1=;§j;hx #12) de % 2 20)
asymptotically for 8 — 0 provided
A= j; xgwydv<0, B= Jl; 2 g)de < x, Q1)
Under this assumption cgns (17) and (18) give
. «
Ele(t) — e(s)] x A ;(I - s) (22)
Varle(r) - e(s)] * B bﬂzu _ (23)
and we get the coefficient of variation
v VB I "
ey X 2
€~ els) A Vall = 5 (24)

asymptotically for 5 — 0. We see that the uncertainty of the creep strain by this model shows up macro-
scopically even though both the mean E[ ¥] and the variance Varl Y] of the single creep event according to
eqns (19) and (20) approach zero for 8 — 0 because G(0) = =. This vanishing effect of the single creep event
is counteracted by the large intensity of the Poisson process approaching infinity as & — 0.

In the mode! of Cinlar et al. the function g is explicitely defined by

gy = °T y>0 25)

in which case A = B = 1. The Laplace transform £(A) of fy(y) becomes

! =} . Gid(h + A)}

¢ - ~AY)] = - (h+;\),\d.=______
B0 = Ele ™) = Zoos L Se y s (26)

such that the Laplace transform corresponding to ¥, + <+ Yn with h = t ~ s becomes
- YN = (G{d(h + A)])" [ahGBHY" _ ..
AMY1+ -+ VN = ahG(5b)
Ele =2 ( G(8b) TR

= g wnGBA %(ahG[B(b + N QN

n=0 "

exp [~ ah{G®b) - GIS(b + M)
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in which
Mb+A) e~ ¥ b+ A
Geb) - Giseh + ) = [ dy = log 28)
such that
v y b ah
ELEIEEES Y]
Ele - (b =) 29)
for 8 — 0. The limit is the Laplace transform of the gamma distribution with density
b th =1 o~ by
e (by)" e ™, y>0. (30)

Flah)

From the continuity theorem of Laplace transforms ({8], p. 408) it thus follows that the strain increment «(f)
~ (s} for the limiting mode! obtained for § — 0 is gamma distributed with scale parameter b and shape
parameter ah. This, in fact, is the local gamma process model of Cinlar ef al. corresponding to the strain
increment over the time increment / at time 5. Letting o and b be functions of s and 7 lead to a definition
of the entire creep function process for a unit stress increment applied at time 7. For a nonnegative stress
increment der different from the stress unit we only need o multiply a by do in egn (30).

If we adopt the white noise model of eqns (6) and (11), the mean and variance of
the average strain

1
al0) = [ f €60 31

over a subbody B of the specimen (notation: | & | = volume of B) by substitution of
eqns (12) and (13) into egns (9) and (10) respectively become

Elex()] = f ;0 ( f '" k(s, 7) ds) do(n) 32)

Varlea(n)] = ﬁ:&—} I, ( [ ewtsn ds) | dot) | (33)

gss:jumg%;tg by writing do(t) = do(r, 1) that the stress field is homogeneous within the
ody &.

Obviously we may interpret the mean and variance in eqns (22) and (23) as corre-
sponding to the average strain increment over a unit volume with an imposed homo-
geneous uniaxial unit stress field increment. By comparison of eqns (22) and (23) with
eqns (32) and (33) we may therefore choose the functions &(s, 7) and cw(s, ) such that
the constitutive equation (6) with eqn (11) substituted is consistent up to second moment
results with the model of Cinlar et al. We get

_ als, 7)
kis, 7} = “—b(s, D (34)
cws, 1) = &) 35)
’ b(s, 7%

Example 2. We may even assign distributional properties to the white noise strain process W(r, s, 1, u)
that are consistent with the distributional assumption of Cinlar er al. The incremental contribution to the
average strain ex(7) for an increment in (s, 7, &) from the point (5,, 7, o{1;)) to the point (53, 72, o{(%2)) (5}
S5, TSNS TS5, Fig. 1)is

1 ” (e ) Hdater) a2
— f f f f W(r, s, 7, u) ds du. 36)
| R I v Jren Ju=aie) 5 = ¥1

To this increment we may for yAc > 0 assign the probability density

b ‘ QI ( Ao )ahliﬁlléul—t _ Ao
T(ah | Bl Ao |) PIB g exp| ~b| B3y a1
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and zero otherwise. Herein & = t; — 1, is the time increment while Ac is the stress increment over the
increment 72 — 7, in the time of loading 7. The density in eqn (37) is assumed to be the density of the increment
in eqn (36) asymptotically for # = 0, 72 — 7, = 0 and | B | — 0 such that the diameter of ® approaches
zero. The distribution of e.(7) is finally assigned as the convolution of the densities of egn (37) over all
increments making up e.(r). It is not an easy task to calculate this convolution for a general stress history
unless b is a constant and Ao/ | Ao | = | (or ~1) for all 7 (setting Ao/ | Aa | = 1 (or — 1) whenever Aa =
0). In that case e.4(f) (or —€.(¢)) has a gamma distribution with scale parameter b | 3 | and shape parameter

r r
J;e_ﬁ J:‘O .£=1 a(s, 1) ds | do(r, 1) | (38)

in which 9 is not restricted to be small.

Triaxial creep
The scalar constitutive equation, eqn (6), may be generalized to the tensor equation

a(r. 1)+ da(r.7)

t
ei.i(r° 1) = _[r==() p Sijrx(r- t T, 12) dury (39)

1= Gi(r,T)

giving the creep strain tensor ¢;;(r, 1) as function of an imposed stress tensor history
a(r, 1), 0 = 7 =< 1. For fixed ! the integrand S;;,.(r, ¢, 7, @) is a second moment white
noise random tensor process with parameter set B X Ry, x {space of stress tensors
i}. The writer [6] has explored the first and second moment properties of S;;.(r, ¢, 7,
1) assuming statistical isotropy and a simplifying form-invariance property of the co-
variance tensor. Isotropy requires that the functional dependency of the stress tensor
increment d@ = @, — i1, is solely through the invariants of di. The simplifying as-
sumption is that among the invariants the covariance tensor of S;;,. is only a function
of the norm || dit || = Vdu;,du;,.

For the mean creep tensor the result is of the form as the usual constitutive equation
for isotropic linear visco-elasticity:

Efej(r, 1) = f“n Kijn(t, 7) do,y(r,7)
= f'=() (1 + w(t, 1) C1, 1) da,(r, 7)

~ 8y [ w1, €, 1) doe, ) (40)

in which 8,; is Kronecker’s delta, C(t, 7) is the creep function while v(z, 1) is the Poisson
ratio function.
The covariance gets the form

do,(r;,7)do,,(r;,7)
| do(ry,7) |

Covlei(ri, 1)), €xi(ra, 12)] = d(r2 — ry) L dijairspg(tist2,7) 41)
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in which the isotropy of the tensor d;;«.,, implies that the integrand in its most general
form is given by 8 scalar functions by, . . . . bxof 1), 12, 7:

do,, do,,

1do | = [b, do;; doyy + bz (doy dojy + doy; doy)

di,ilu Irspey

+

by (8;; doys + B do;;) do,,

+

ba (8; dou + 8 doy + 8y dojx + du dojy) do,

BUSH (/’5 (d(r.u): + /’h d“r.\ d‘rr.\)

+

1
(801 + 8:ds;) (b (dos,)? + bg do,, do,,)] m- (42)

+

If the tensor version of eqn (11) is assumed to be valid, the implication is that the
functions b,, . . . , bs become solely functions of min{z,, 72} and .

Example 3. Let a principal stress tensor increment of the form
doy; = ado. dox = Bdo, doy = ydo. do > 0. a+p+y =1 (43)

be applied to time 1. Let J(1. 7) be a scalar nonnegative process in ¢ = 1 with mean C{¢, 1) do and variance
w(l, 7) do. Assume that

en =(a - Bv —yw)J

fl

€ =(—av + B — wJ (44)

en = (—av - Bv + y)J
in which v is some nonnegative deterministic function of ¢ and 1. By comparison with eqn (40) it is seen that

v is the Poisson ratio function w1, 1) while C(1, 1) is the creep function.
In order to have consistency between eqns (41), (42) and the variance

Varle] = (@ + B*v? + ¥ v do (45)
for any normalized (a, B. y) the functions by, . . . . by must be defined by
by =1 + vPw., by = =l + vIw, bs = viw 46)

h; b4=bo=b7=bx=0.

In Ref. 6] the process J is assumed to be proportional to a nonhomogencous Poisson process of intensity
w7, 1) da with proportionality fuctor a(s, 1) (not the same a(z, 1) as in Examples | and 2). In that casc the
variance function w is w = «*p = aC. However, this result is more gencral than the Poisson process
assumption indicates beciuse we may define the function o by

wit, 1)

1) = ——
alt, 1) o

(47)

for the function w corresponding to any nonnegative scalar process J of finite variance. In place of the
terminology **Poisson process viscous creep”’ used in Ref. (6] we will therefore simply use the more general
terminology *‘scalar process creep'” in case the functions b, . . . , by are defined by eqn (46).

The strain tensor ¢;;(r, 1) must satisfy the usual local compatibility conditions and
the stress tensor increment must satisfy the local equilibrium conditions. Since the
constitutive tensor equation, eqn (39), is stochastic, it follows that not only the strain
history is stochastic but also the stress history has this property due to the compatibility
conditions. Thus the stress field cannot be imposed as a free variable. Only stresses
on the surface of the body and/or displacements of the surface can be specified either
in terms of given random fields or given deterministic functions of position on the
surface. This fact makes eqn (39) nonlinear in the stochastic processes & and S;;,, such
that it becomes virtually impossible to solve any boundary value problem. Therefore
it is necessary to substitute a simpler constitutive equation for eqn (39) obtained from
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eqn (39) by linearization with respect to &, & + d&, and S;;,.. This linearized constitutive
tensor equation reads [6]

t Elatr. o)+ JEr(r )]
g(r, 1) = f Uf Sijrs(ry £, 7, &) du,
=

Elotr.t)]

+ f;o Kijrs(t, 1) (do(r, 7) — dEjo,.(r, )] (48)

in which K;;. (1, 7) = E[S;;.(r, 1, 7, @)].

Biaxial creep

This paper considers the simpiest possible biaxial stress problem. It deals with the
determination of the covariance structure of a stochastically homogeneous stress field
and the corresponding strain field. It should be emphasized that strictly there exists
no biaxial state of stress within the three-dimensional model except in the mean. The
compatibility constraints will cause stresses to develop with components in all three
dircctions of the space. In order to be exact when speaking of a biaxial state of stress
it should, in fact, be related to a two-dimensional model. A two-dimensional model is,

however, given directly from the three-dimensional model by restricting the index set
to {1, 2}.

Some conclusions. The experimental challenge

The detailed biaxial stress analysis to follow reveals some interesting features of the
stochastic creep model defined by the linearized constitutive equation, eqn (48), under
due consideration of the local compatibility requirements. Whether these features re-
flect real creep behavior of a material like concrete or any other material is an open
question, of course, which may be a challenge to experimentalists in mechanics.

The first conclusion is that the assumption that the tensor process S;;,(r, ¢, 7, @) is
white noise with respect to the two-dimensional space variable r implies that both
stresses and strains of a stochastically homogeneous stress field get infinite variance
without the fields being neither white noise in the plane or along curves in the plane.

In order to get finite variance solutions it is necessary to substitute an ordinary
covariance function in place of the delta function 8(r; — r,) in eqn (41). It may be
taken as the generic member p.{r. — r;) of the sequence of functions by which the
Dirac delta function is defined as limit. Specifically we have

po(r) = 3(r) for o—0 (49)

in which p,, o € R, is a family of functions that are admissible covariance functions
for homogeneous and isotropic random fields, and which have the property

[ pota? + D) f, x2) dxy da = £0,0) (50)

for o — 0 for any function f continuous at (0, 0) for which the integral exists. In
particular, the function f(x,, x2) = I is assumed to belong to this class of functions.
Specific examples of such families of covariance functions are given in eqns (66) and
(67). The isotropy ensures that p.(r) is of the form

_ 1 fxi+ a3
pu(r) - 0,2 P( 0_2 ) (5 l)

where p(x), x = 0, is a function with p(0) < =, x p(x) ~ 0 for x — =, and 7 [5 p(x) dx
= 1. After the substitution of po(r. — r;) for 8(r. — r,) in eqn (41) the equation still
represents an admissible correlation structure of the strain field ([7}, p. 359).



Biaxial isotropic stochastic visco-elastic creep 1057

This step of changing the delta function factor in eqn (41) to a generic member of
its defining sequence is in line with the approximation philosophy behind the use of
the concept of second moment white noise field. This concept is introduced as a math-
ematically simplifying approximation to a random field with a *‘small’’ correlation
length scale ([S]. pp. 23-24). Thus using p,(r. — r,) in place of &(r; — r,) with **small”’
o corresponds to a step back toward the original correlation structure of the random
field.

For p.(r) given on the general form of eqn (51) a solution is obtained for the co-
variance structure of the stress tensor field and the strain tensor field. It is of particular
interest to study the behavior of the solutions as ¢ — 0, of course. It turns out that
the variance of the average normal stress or the average shear stress on a linear cut
of length L is asymptotically proportional to log(L/c)/L? for large L/o. After division
of the variance by log(1/o) = —logo we therefore get a finite limit proportional to 1/
L? for o — 0. This behavior (and also the size of the proportionality factor) is inde-
pendent of the particular function p used in the limit operation.

The consequence of this observation is as follows. Let the covariance structure of
the sccond moment white noise tensor process S, of the constitutive equation be
changed as follows. Replace the delta function 8(r, — ry) in eqn (41) as being the
generalized function obtained from p,(r, — r,) in the limit c — 0 by a type of generalized
function obtained by passing to the limit with p,(r. — r,)/(-logo) for ¢ — 0. In this
way we obtain a formal process which may be called a logarithmically weakened second
moment white noise process. For this model the average strain across any finite part
of nonzero volume of the body caused by an imposed deterministic stress history will
be deterministic in the sense that its variance is zero. However, the compatibility
conditions make it impossible to impose a deterministic stress history. A random stress
field will develop giving an average stress across a linear cut of length L with finite
standard deviation proportional to 1/L. Furthermore, it turns out that the stress field
will cause strains that in general also after integration along a path will be of nonzero
variance. The perspective is quite interesting. In Ref. [6] it was shown that the co-
variance properties of the average strain tensor across a body subjected solely to given
external forces for the linearized constitutive model are determined by the mean stress
field history. If the logarithmically weakened white noise model is adopted, the con-
sequence therefore is, e.g., that the elongation and curvature processes of the beam
of Example 3 in Ref. [6] become deterministic. This shows that it is not given that the
usual standard measurements of deformations of external statically determinate test
pieces are well suited to disprove the existence of phenomena that may be modelled
as random visco-elasticity in the sense defined herein.

Another interesting conclusion concerns the displacements relative to the origin.
The variance of the radial relative displacement off the mean stress principal axes of
a point in distance L from the origin is in general asymptotically proportional to L/o
for large L/o. In some cases as for example for scalar process creep, see Example 3,
the variance increases at less order of magnitude than L/o for increasing L/oc. When
the radial direction is coincident with any one of the mean stress principal axes, the
variance of the relative displacement is asymptotically proportional to log(L/o) for large
L/o. For the logarithmically weakened second moment white noise model the conse-
quence of this peculiar behavior is that the variance of the relative displacements in
any of the two directions of the mean stress principal axes for o ~» 0 will approach a
finite and constant value while it may diverge toward infinity for all other directions.

HOMOGENEOUS RANDOM BIAXIAL STRESS FIELD

For a homogeneous random stress field the mean stress tensor increment dE{o,(r,
)] is independent of r and all covariances are dependent on r,, r; only in terms of the
difference r» — r,. Since the stress field is biaxial, the equilibrium equations are au-
tomatically satisfied by defining the random stress increments in terms of a random
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increment of an Airy stress function ®(r, 1). We have

do(r, 1) = dPy(r, 7)
duaalr, 1) = dd i (r, 1) (52)
doa(r, 1) = —dd ;a(r, 7).

There is only one compatibility equation
€22 + € — 26522 = 0 (53)

which after substitution of ¢;; given by eqn (48) becomes

t [EIG(+ dELS(r D]
f f . (Stirsz2 + Sozreitt = 2812m02) (v, 1, 7, G) duty
=0 JEFrn]

+ j;=0 (Kllr.\' dcn\'.22 + K22r.\‘ dor.\".ll - 2K|2r,\‘ dG‘rx.lZ) (I', t, T) = (. (54)

By the notation mi(t) = E[&(r, 7)] and by using eqns (40) and (52), eqn (54) may be
rewritten as

[, e, ), doe, v

t () + drit(r)
= _j;-s{) J:i:(ﬂ (S!tr.s.22 + 8223’5.!! - 2S12rx.!2) (rs LT, [") d“rs (55)

in which (A?), is the squared Laplace operator, i.e.
(%), @ = @111 + 2P 22 + P2o2e (56)

The covariance function of the left side of eqn (55) is

Cov[—’;nxo Clti, 1A%, dd(ry, 7)), J‘ﬂuo Cltz2, 12)(A?),, dP(r, Tz)]
= (Az)n(AZ)‘_: J;;“ —[:”0 C(t,, 1)Clta, 12) Covldd(r,, 1), dPir;, 72)]. (57)

By the homogeneity assumption this double integral is a function of ry, r; solely through
the difference ry ~ r,. Writing this function as F(ry — ry, 11, £2), i.c.

F(ra —ri, 1, t3) = fn;“ J;:u C(ty, 1)C(12, 12) Cov[dd(r|, 7}, dP(ra2, 12)] (58)

it follows that the left side of eqn (55) has the covariance function
A*F(x, 1y, 1) (59)

in whichx = ry — ry.

The right side of egn (55) has a covariance function that follows by use of eqn (41)
in which the integrand is independent of r,, r» when dm,.(1) is substituted for do..(r;.
1), dm,, (1) being the components of ds(7). In the following the coordinate system of
principal mean stress increments is kept time invariant. Writing the contracted tensor
in the integrand of eqn (41) as d,;« and referring to the coordinate system of principal
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mean stresses, the covariance function becomes
" 2 @)
j;, [divy 8(x) 89 (x2) + (dizz + daan + 4di212) 5% (1) 8% (x2)
+ dazaz 8 (x1) Bla2)].  (60)

Thus by cquating the expressions of eqns (59) and (60) we get the partial differential
equation

b
P4

A*F(x) = 3 azp 8% (x)) 8“2 (xy) 61)
p=0
in which
iy 1 ]
Go=f diyis, @2 = Zf (diizz + 2dy212), a4=f daz2z (62)
0 0 0

are given functions of (1, f2). In order to keep the notation short, #,, 7, are not shown
explicitly in eqn (61) and in the following. Writing F(x,, x2) symbolically in terms of
its Fourier transform F(w;, w2), i.e.

F(xy, xp) = f:‘ fj Fwy, wy) eei+x2 doy duw, (63)

and the Dirac delta function as

= = (1),
serod) = [ [ (2—;) elxter+xen) do; dw, (64)

(remembering that these integrals are the Cauchy principal values) it is seen by formal
differentiations behind the integral signs followed by substitution of the obtained de-
rivatives into eqn (61) that

. 2 2 2 2_2,,
Flw,, wp) = <_1..) E Wi w2

2w/ S 92 (@1 + B (63)
It turns out that this is not a Fourier transform of any ordinary or gencralized function
F(x,, x2), see Appendix. This means that there exists no finite second moment solution
corresponding to a homogeneous random stress field. As mentioned in the introduction
it is, however, possible to obtain a solution if the delta function factor 8(x;)8(x;) (=
3(r; - ry))in eqn (41) is changed to a function from a sequence of functions that defines
the delta function in the limit. For example, such a function is

1 xi + x}
2ma? CXP[ 2¢° ] (66)

which we will call a Gaussian type covariance function. Another example is

I X1 2 X2 24 ~372
L [1 ; (U) " (0) (67)
which we will call Cauchy type covariance function. Both functions of egns (66) and

(67) give a delta function of (x;, x2) in the limit o — 0 and both are admissible covariance
functions for isotropic random fields ([7], pp. 358-360). Thus eqn (41) after such a
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change still represents an admissible correlation structure of the strain field ([7], p.
359).

After change of 8(r> — r)) to p.(r2 — r;) where p, is given by eqn (51) as an admissible
covariance function of an isotropic random field, eqn (61) is changed into

oy & x4+ x3
4 F = _.? = .’ 2
A (x) pg() ol axipaxg—Zp p( a2 ) (68)
while eqn (65) is replaced by
(1)2”(04 2p
(O.)la W) = 2 azp, .(_l—z_i? p((O'w]) + (awz) ) (69)
p=0

where p(w? + w3) is the Fourier transform of p(x} + x3). In order to calculate covar-
iances between any two stress tensor components it follows from egns (52) and (58)
that we need the inverse transform of

0f w3 Flo,, ;) (70)

forq = 0, 1, 2, 3, 4. Writing the function corresponding to the Fourier transform

i (IJAB a b
Fuplon, w) = (—wz'—_’_—-)';,; plof + w3) (7

as F..p)(x1, x2), it follows from eqn (69) that

*F(xy, x2)

2 X) X2
LI L r S ts, Fa 222y (72
axfaxi—4  o? ; ' ('“’2'(0 0) )

The particular form of the right side of eqn (72) and the linearity of eqn (58) imply that

4

Covl{dai;(r,, 71), dowu(rz, 72)] = (—1)¢ Cov[d®(r), 1), d&(r:, 12)] (73)

oxqox3—«
g=i+j+k+1-4 (74)
may be written as
Xy X2
(=07 ‘(‘T" EO Aty 12) Fapag. 2)(01 U) (75)

in which A,,(1, 72) is the solution to the integral equation
1 12
[ [ w0 €l ma) Asglrs, 7 dm dma = o, ). (76)
Ty T2

This equation may be solved by numerical standard technique approximating it by a
set of linear equations. Having determined the functions Ao(71, 72). A2(71, 72), Au(mi.
7,) we finally get

COV[O’U(I‘], tl)o Ukl(rZy "‘)]

X X2
= (- l)q_p=0 (J:,-of Ayl 72) d7y d'rz) F¢2,,+¢,2)(0_| -;) (77)

with g given by eqn (74).
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AVERAGE NORMAL STRESS AND SHEAR STRESS ON A LINEAR CUT

Let a linear cut be given by the parametric representation (x,, xz) = (as, bs) where
a, b are constants for which a’> + b* = 1 and s € R is the parameter. Then the normal
stress on the cut is given by o;; n; n; where n, = —b, n, = a, while the shear stress
is given by oy; r; t; where {, = a, t, = b. Denoting by superscripts / and /I the stress
tensor at place and time I and place and time I/ along the cut and in mutual distance
s we have from eqn (77):

Covlal; n; nj, oll ni i} = n; n; ny n; Covlal;, ot}

] 2 L 12
=2 p§=:u (j;.-_—o L:=()A2”(T" T5) d7y d'rz)

o as bs
X (=D o avivjrke12) (;, “;) n; nj ng ny (78)

where the last line according to eqn (145) of Appendix 1 becomes

> u¥(au + b)* as bs
wlau v o) a2z 9
zf-x (1 + &) qJ(“ o o‘) du (79)

since
(_l)i+j+k+l “i+j+k+l~4 nin g n = ((__u)r‘—-i n,—)“ - (b + au)‘t. (80)

In case the shear stress covariance is calculated, we get the same result except that n;
and n; is replaced by t; and ¢ respectively. Then

(= 1y *irhet yivivkel=4 g pomety = (—u) =" m)P? ((—uy~" 1)
= (b + au)* (@ - bu)*. (81)

Finally, if the covariance between the normat stress at I and the shear stress at [/
is calculated, solely n, should be changed to t;. Thus we have

COV[G‘ﬁj n; Ry, okt ni ny) 2
Coviol ninj, ol ni 1] } = p

2 141 o1
z £|=0 j:'“=0 Azp(Th 72) d‘T| d"rz

Covlal; n; t;, ot ny 1] p=0
r ﬁ; W ¢(u, 95, %’) du (82)
X < J‘_’; uZP(au(-lf- 2)22(;12 - bu) d‘(u. %.{’ %s_) W @)
f.: u™(au g 3)2“(26;5- bu)? 4,(14, fg, %5) du. (84)

We see that the first, eqn (82), and the last, eqn (84), of these integrals with respect
to u both are of the form as the function g(s) given by eqn (156) of Appendix 2. The
variance of the average normal stress across a part of length L of the cut to time ¢ is
71, p. 307)

i L 4 2 Lio L
Var[z [ @nm ds] -3 50 [ (%- ) e@ds @

p=0
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in which g,(s) is the function defined by the integral with respect to « in eqn (82). while
H 4
Bty = [ [ Asnlri, 52) dry dm (86)

Using eqns (156), (180) of Appendix 2 we have

L

log—

I rt I = (Bo(t) + Bi(D1? + Ba( Y au + b)? o
Vur[zﬁ) («r;},n;n‘,-)d,v] «;5]_,, 0 i i di - &7)

asymptotically for large L/c. The right side converges to zero for L — < showing that
the normal stress process o;; #; #; is ergodic in quadratic mean with respect to the mean
(171, p. 308). A corresponding result is obtained for the shear stress process o;; n; ;.
In cqn (87) we simply put (¢ — bu)® in place of (ax + b)*. As an example, by using
the table of Appendix 1, eqn (87) may fora = 1, b = 0 be written

logé

Var[ f (o ni ny) dv] X — (BQ(I) + By(1) + 5B, (88)

Equation (87) shows that the variance of the average normal stress across any finite
piece of the cut approaches infinity for o — 0. This reflects the fact that eqn (65) does
not define a Fourier transform. However, it is interesting to note from eqn (87) that
forany L

| I 1.
(I'LT) Zlogo dl[z J:) (g mi ny) d.s]

— 11 f’ (Bo(t) + Byt + By{)*) (au + b)~
L * (I + &)

(89

independent of the particular covariance function p,,, eqn (51), used in the limit op-
eration ¢ — 0. The consequence of this observation is discussed in the introduction,
motivating the introduction of a formal process called logarithmically weakened second
moment white noise.

THE STRAIN FIELD

In order to calculate the covariance function of the strain tensor field for a fixed o
> 0, the covariance between the two terms of eqn (48) is needed. By forming the
covariance between €;,(r,, #;) as given by eqn (48) and the left side of eqn (55) for ¢ =
1> we get the following equation

COV[E,-_,-(rl, t), j:-o C(t2, 12)(A%)y, dO(r2, Tz)]

m(ry) + drt(ry)

= —Cov f f ijrs(rh 4y, T1 a) dur.n
T1=0 Jrilry)

m(-rz)+dm('r2) .
f f Stimn22 + S22mn11 — 2812mn,12)(T2, t2, T2, @) ditmn
T2=0 Jr(12)

3] ]
+ COV[ [ Kuntts, m) dontrn, ), [ Clta, a8, dotEs, —w]. (90)
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Defining
Gifra — 11,1y, 12) = f:_n C(t2, 11) Covle;ry, 1)), dP(r2, 72)] 1)

the left side of eqn (90) may be written as A2G,(r. — ry, 1), I2). With K;;,, given by
cqn (40) the sccond term on the right side of eqn (90) becomes

A? D,",' F(ra = ry, 1), 12) (92)

in which F is defined by eqn (58) and D,; is the differential operator

Dy = — vbyA + (1 + ) (-1)"+f5;,i—+rfza;§—_;_—j. 93)
The first term on the right side of eqn (90) is
_ ﬁ éo bualti, 12) 3 :;5-.. p(x% :2 xi) (94)
in which
n f n
buo = [ dyuis by = =2 dyua, bia = [ dim 95)

are given functions of (1), 12) (1, < t», see definition of d;;, at eqn (60)). Thus eqn (90)
may be written as

12 02 x} + x3
2. = - — e 96
A°H, a? ‘,;0 by oxg ax3~e p( a? ) %6)
H,“ = G,'_,' - D,’jF. (97)
The Fourier transform of H,; becomes
Ao, 02) = .Eo bija (u:?tiw%)z pl(re ) + (0w2)?). (98)

Since, however, we need the covariance Covle;;(ry, ¢,), dow(rz, 72)] rather than that

of the integrand of eqn (91), it follows from eqns (52) and (91) that our interest is more
in

[

(=*' Gijackar = f

o C(ta, 12) Covie;i(ry, 1), dowlra, 72)] (99)
than in G;; itself. Referring to eqn (97) we thus need to invert the Fourier transform

—wf*-? wg—k_lﬂij(wh w2) (100)

to get H;; 53—« 3—;. Comparison of eqn (71) with eqn (100) after substitution of eqn (98)
shows that

1 2 X X
Hija-k3-i(xy, x2) = e > bija Fasksi-2.0 (;l, ‘;2) (101)

a=(
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Equation (97) then gives

Gijs-ka—tlxi, xz, 11, t2) = Hijz_ga-fx1, X2, 1, t2) + Dy Fa_g sy (102)

in which, eqns (93) and (72),

O*F F
DijFs-k3-1= _vsij<ax’|‘+'ax§"‘" * aﬂ*"’a::é‘"")
*F

+ (1 +v)(=1)y*

Axi I k=4 g Bk

1 2
= —2 2 azp[‘V5ij(F(2p+k+1.2) + F(2p+k+l-2.2))

+ (I + (=" Fopiivjrari-anl]. (103)
Thus eqns (99), (102), (101), and (103) give

[
J:rz=0 C(t2, 12) Covleiry, 1)), dow(ra, 72)]

= (~ 1)**!(sum of the right sides of eqns 101 and 103).  (104)

In order to calculate the covariance Cov[e;;(r;, 1)), eu(rs, 12)] from eqn (48) we note
that it is a problem of the following type. Let X, Y, Z,, X3, Y2, Z: be random variables
such that Z; = X, + Y, and Z, = X, + Y. Then from expanding the right side of the
identity Cov[X,, Xz] = Covl[Z, - Y|, Z, — Y;] and solving with respect to Cov[Z;,
Z,] it follows that

Cov[Z,,Z;] = Cov[X,,X;] — CovlY,, Y2} + CoviZ,, Y] + CoviY,,2Z,]. (105)
Using this on eqn (48) we get

miTy) +da(Ty)

Umn(rl 2, T, d) dumns
=0 Jm(T))

[+ wi(T2) +drit(T2)
f f Sk/r.\'(r29t2! TZ»“) dul‘.\'
T2 =0 Ji(T2)

H 1?2
- f f Kijmn(t1, 7)) Kiirs(t2,72)
T1=0J12=0

X COV[dO',,,,,(l'| s T1), do’r.\'(qu 72)]

Covlejr, 1)), eulra, 12)] = COV[

12
+ J; =0Kkm~(’2, 72) Covle;j(ri, 1), do,(r2, 72)]

h
+ ,[r =0Kijvnn(ll . TI) COV[€kl(l‘2, fz). do’mn("l ’ Tl)] (106)

=°l2p(x1 +X2)f dijad

- f” ) o C1Ca[v1v2 8,84 Covldo,,, doy,]

j=0J1m=

- v.(l + 'Uz)s,'_/ COV[dO‘s,, d0'k1] - v:(l + v.)Skl COV[dO‘,’j, dO’,_,]
+ (1 + v + vy) COV[dO’,‘j dO’k/]] dt, dr
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+ f I o C;[—v;ﬁ;j COV[dO‘,\W; ekl} + (1 + ) COV[dO’,’j; EAI]] d’ﬁ

=

+ f ;,Czi—vzﬁm Covle;;, do,,] + (1 + v2) Covie;;, doyl] dr2 (107)

in which the notation has been shortened conveniently. By use of eqns (73). (75), (76),
(104) and of eqn (145) of Appendix 1 the covariances of the integrands of eqn (107)
may next be calculated. Substantial simplifications show up in case the Poisson ratio
function v(1, 1) is a constant. In the following we will assume that this is the case, i.c.
that v = v, = v. Then we get

2+ 2 n
a?Covle;, €] = p(x' lez) j; diju dr

+ v?8;;8i(aoF 0.2 + (ag + a2) Fa.zy + (ao + 2az2 + a4) Fu 2

+(az +2a4) Fe2) + asFg) + (1 + 2 (- 1)i+j+k+l

X [@oFuvj+ist1-a2) + @2 Fwjrrst-22 + @aSFisjrkri2)]

—v(1 + V) (- D**'8;lao Fxv1-22 + (a0 + a2) Fu+12)

+(az + ag) Fuvivs2 + @aFierrva )]

—v(1 + V) (= 1)*/8ulao Fi+j-2.2 + (@0 + a2) Fusj2)

+ (a2 + aa) Fiivjr22 + @aFisjran)

+8i[bijo (Fo.y + Fa.y) + bin(Fa.n + Fan) + bip(Faun + Fup)l

+0ylbrio (Fro.ny + Fauny) + ben(Fan + Fay) + bin (Faay + Fa.n)

—( + v)(= D byjo Fxwt-2.0 + bijt Fuw1-1.0 + big Fvinl

—(1 + W= 1" bio Fisj-2.0 + bin Fiwj-1.) + bz Fuvjnl. (108)
By use of eqn (145) of Appendix 1 and that p(x7 + x3) = Fo.0) (x1, x2), this gives

COV[E,‘.,'(l'h 1), eulra, )]

X1 X2

2 - \“(u,;,;) "
=— —— 2y " 25 242
= sz_x EYEE {(l + u’) j; dijrdr + [V?8;,0u(1 + 11%)
4 (1 4 vR(—u)f R4 oy w(—w) By + (—uy B+
w?)
X (ao + axt® + agu) + (1 + ?P[du(l + &) = (1 + v)(—wf*'"?)
X (bijo + by u + bjau?) + (B (1 + 4?) — (1 + v)(—uy*/~2)

X (brig + brput + bmuz)]}du (109)

DISPLACEMENTS RELATIVE TO THE ORIGIN

The displacement relative to the origin O in the radial direction of a point P of distance
L from the origin is

Lo

wor(L) = L e:,(as, bs) tt; ds (110)

in which (#,, 1) = (a, b) is a unit vector in the direction OP. The notation ¢;(as, bs)
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is short for €;,;((x, x2), 1) with x|, = as, x> = bs. The variance is

Liy

L
Val‘[ll()P(L)] =2 j; (; - S> COV[E,‘J'(O, 0), ey (as, bs)] ittty ds (“])

where Covle;;(0, 0), exlus, bs)] is given by cqn (109) for ¢ = 1. Using eqns (41) and
(62) to calculate the factor to p(r?) in eqn (109), we have

Covlei(0,0), exilas, bs) ;144

_ * W, as, bs)

= A+ {(1 + u?)*(aoa* + 02?6 + asb*) + (W(1 + &*) — (1 + v)

X (a — bu)*)(ao + axu® + asu®) + 2(1 + 2 (v(1 + u?) — (1 + v)a — bu)?)

X (co + ¢ u + cau®)}du (112)

in which

Co aoaz + bzzobz

Ct

2b12|(1b (113)

¢ = b||3,tl2 + ush®.

The right side of eqn (111) gets the form

= A
4f_x R(u) L (A = 5) Y(u, as, bs) ds du

=4[ Re [T -9 [ vped) cos (il ) qudsau (114
=4 R | s) |, v Pt cos \/]__4-—142“ vdsdu (114)

in which A = L/o, and R(«) is a bounded rational function of order of magnitude O(1/
u?) for | u | — . It is shown in Appendix 2 that this expression under quite general
conditions on p(v?) asymptotically equals, eqn (193),

4—7:R(—[-7-) <f’ p(v?) dv) L (115)
a a 0 i

for large L/o. Thus we get

Var{upp(L)] * 8w(ab)*(az — bz — bz — 2b12) (_[: p(v?) dv) é

= 641r(ab)2 (J: d12|z(1, T) dT) (J:n f)(vz) dv) é (1]6)

asymptotically for large L/c. The last step follows by using that b220 = b;;2 and a; =
2(by12 — bi21), eqns (62), (95). Given that dy2,2(¢, 7) is not zero, the implication is that
if the factor 1/02 of eqn (51) is changed to 1/ and we pass to the limit o — 0, then the
variances of the radial relative displacements become proportional to L. The variance
is zero for ab = 0, i.e. in the directions of the principal axes of the mean stress tensor,
and it attains its maximum for a = b = 1/A/2. The resulting white noise process of
zero intensity may be called a linearly weakened second moment white noise process.
For this model the average normal stress or shear stress across any linear cut of finite
or infinite length is deterministic since o/loge — 0 for o — 0, eqn (87).
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For ¢ = 1 the rational function R(«) becomes
R(w) = [1PQ2 + vud)ao + (v — 1)%(a; + au?)
+ 200 + @@ = Dbu2) W1 + W?)°. (117)

Due to the factor «* it may from the investigations of the Appendix leading to the limit
result of eqn (180) be concluded that

. ol g
Varlu,p(L)}) * -—|:, <f Riu) l ,“ du) log L (118)
T x u’ o

asymptotically for large L/ and valid for the relative displacements in dircction of the
x; axis of two points O and P on the x, axis and in mutual distance L. It follows from
eqns (118) and (116) that the variance will be finite and constant for the logarithmically
weakened white noise model in case ¢ = | (or b = 1) but infinite for all other directions.

If b2, is zero, i.e. if dy212(t, 7) is zero identically, Var[uopr(L)] for any direction
increases with L/o at less order of magnitude than L/o. Fora = 1 or b = | the order
is log L/o. It seems rather difficult to find the exact order of magnitude for other
directions.

SCALAR PROCESS CREEP

Consider the special case of the scalar process creep of Example 3 leading to eqn (46). Assume that both
vand a = w/c are time independent constants and that the expected stress tensor increment driz takes place

at time zero, i.e. dm,;(1) = 8(7) p;;, with p,; being a constant principal stress tensor. Then the integrands
of eqn (62) become

dun _ 2dnan + 2diai2)  dn  a C, 1)8(1)

b gt st L2222 (119)
ho hy ha Vuh + udb
with
I = (un = van). hy = (p22 ~ v (120)
hy = 2wy = vpoa e = v azn
and we have
n
aylti ) = ky [ 86) Cltr, 1) = kap Clt1, 0) (122)
in which
[N — (123)

The integral equation. eqn (76), in this case gets the form
I, cwmw [fn"_o_ Cltz, 12)Azy (1, 72) dn] dny = ks, Cl1, 0) (124)
from which it follows that
[, €tz w2 Agytrr. 1) drs = ki Bima). (125)

Given that the homogeneous integral equation obtained from egn (125) by writing 0 in place of k3, 8(7) has
only the zero function as solution. we may write the unique solution to eqn (125) on the form

Azp (11, T2) = kap 8(1)) R(12) (126)
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where R(1) is the solution to the integral equation
L Clt. 7 Rex) dv = 1. (127)

1t is seen that R(7) is the so-called relaxation function corresponding to the creep function C(s. 1) for a unit
strain increment applied to time zero and kept constant thereafler.
The covariance function of the stress tensor. eqn (77). becomes

2]2

2a [ = (—w)f gy - vpar + (pe = v
Covla(ri. 1), outes. 1] = =5 [ Reo) /. P Y e

X ¢ (u, 1y ’2) du. (128)
o o

Plots of the component correlation functions as functions of x,/a, x2/o are shown in Fig. 2. They correspond
to the particular cases of the correlation functions of eqns (66) and (67) for which the function Y, x,, x3)
is given in Appendix 3 by eqns (203) and (208) respectively.

The asymptotic result, eqn (87), for the average normal stress on a linear cut of length L and normal
vector {(n,, n.) becomes

«‘—I,f’ Rex) dr f‘ o = v + u:z(;:zz = v ) (g = nau)’
w oo - 0+ @ Vil + v
wa . 4w — vp)’
= e | (I~ WP (g + B2l + {2 — vl + 2Apz - vpnF
16Vui, + pis Mpan — vy

I3
x [ R (129)

where the last three expressions are valid for n; = 1, n; = 1/\V/2, ny = 0 respectively.
For the strain tensor we get eqn (109) with

L " dyadr = f "0 (integrand defined by eqns (42), (46), (47) for do ; = dm;(%))

= [(1 + vPuijiw — W1 + W)Bipar + Subtiphss + V2 (pye)*8i8u)

y aC(1, 0) (130)
Vb + pd

substituted. Further we have for substitution into eqn (109):

aC(1,.0)
bijo(tr, t2) = [(1 + VP parpusy = w1+ V)i + vl By + i) + 92 (ki + 122)*8] == ,V-%_I‘I*'E 131
b2 = byowithinterchange of ;) and p22 (132)
b,*_n =0. (133)

With respect to the results of the previous section we note that Var{uops(L)] increases with L/o at less order
of magnitude than L/g. For the uniaxial case py; = 0 we get

ao=|pnlaC,a; = —2vag,as = Viay (134)
1 fOl‘dun
1 rn ~v fordyzzorda
aoJ; Dot =1 32 fordpy, 339

0 otherwise
2
byio = Go, bazo = b1z = —vag, bany = viao

b,'jo = b.’jz =0 for i#j (136)
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CASE: CASE: MEAN STRESS TENSOR
CAUCHY CAUCHY 1 FOR TIME t20:
CORRELATION CORRELATION P U 2= by
MODEL. MODEL.
X, 50 =0 “q" -
Hy
L It 3
By
alle )
e
K
; X2
bra
CASE: CASE:
GAUSSIAN 1 GAUSSIAN 1
CORRELATION CORRELATION
MODEL. MODEL.
x,20 %0
alle
. %2

Fig. 2. Correlation functions plo:(0, 0, 1), o11(xy, x2, 7)] corresponding to scalar process creep

and the strain correlation model of Cauchy type (eqn (67)) and of Gaussian type (eqn (66)) for

o = 1. As indicated in the upper right corner, the curves “‘a”’ correspond to the case p,, =

p22 (independent of value of Poisson’s ratio v), the curves *'b"' correspond to pa2 = 0, v = §,

and the curves ‘“c'’ correspond to .y, = 0, v = {, all applied to time ¢ = 0. For the case x,
= 0, curve “*b" is very close to “'a"".

giving the variances

2 1

o * 4t + 401 — vt + (1 - v
Vs - ! 2
arkn]p(o) Tl ac “(l + ) f‘x T+ 7 du
= %(35(1 — P+ 2001 — v} + 12)(1 + v)® = 0.643° (137)

a? =1 ot
valrknlp(O) [pulaC 20tV f-ﬂ(l + u’)’d“

= é(l + v)* = 0.208? (138)

o? 1 , = = 2vt + Vb
— Lo T g
vadm]p(O)Ip.ulaC ﬂ(l-i-v) f_’ U+ 27 u

= ég(sz ~6v + 5)(1 + v)* = 0.210° (139)

where the last numbers correspond to the value v = { which is typical for concrete. If the compatibility
condition is not taken into account, only the first term in the bracket of eqn (109) is present. In that case
the above variance factors for €11, €2; and €;2 are 1, v? and 0 respectively. Thus the standard deviation of
€1 is for v = } decreased by a factor of 0.64 due to compatibility. The standard deviation of ez, is increased
by the factor 1.25 (= 6 x 0.208) while compatibility gives approximately the same standard deviation of e
and €2, the last being zero under neglection of compatibility.
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SUMMARY AND CONCLUSIONS

The model of statistically isotropic visco-clastic stochastic creep formulated in the
previously published first part [6] of this paper is considered herein for the case of a
two-dimensional model. A stochastically homogeneous random stress field extended
over the entire plane is described in terms of its covariance structure as function of
the spatially constant mean stress increments in time given that the coordinate system
of principal mean stresses is time invariant. In order to obtain this stress field solution
to the compatibility equation and the local equilibrium equations in terms of a random
stress function and under consideration of the linearized stochastic constitutive equa-
tions as they are formulated in Ref. [6], it is necessary to change the formulation of
the strain field spatial correlation for given stress increment from being modelled in
terms of a Dirac delta function to be modelled in terms of an element in a sequence
of covariance functions that in the limit is a Dirac delta function. The covariance func-
tion corresponds to an index parameter o such that the Dirac delta function is obtained
in the limit ¢ — 0. Fouricr transform technique is applied in the solution procedure.
Interesting asymptotic features of the solution as o — 0 may be studied. For example,
the average normal stress on any linear cut of length L has its variance proportional
to log (L/o)/L? for large L/o. This means that if the covariance functions of the sequence
are weakened by division by log (1/o) then the standard deviation of the average stress
on any linear cut of length L becomes finite and proportional to I/L in the limit ¢ —
0. For a body with given deterministic external stress distribution such a logarithmically
weakened second moment white noise model gives a deterministic strain tensor in
average across the body. Thus this type of stochastic creep is not observable by use
of standard tests applying external statically determinate test arrangements.

The solution for the strain field is considerably more complicated than that for the
stress field. A study of the displacements relative to the origin is particularly interesting.
For large L/o, the variance of the radial relative displacement of a point in distance L
from the origin is in general proportional to L/o or it increases slower than L/o but at
least as fast as log (L/o). In the direction of the mean stress principal axes the variance
is proportional to log (L/a) for large L/g.

A particular simple type of isotropic stochastic creep is scalar process creep (more
restrictively called Poisson process viscous creep in Ref. 6). The results herein are
specialized to this case for a mean stress tensor increment taking place at time zero
and kept constant thereafter. For the scalar process creep the variance of the radial
relative displacement increases slower than L/o for large L/o.

Appendices 1-3 contain some purely mathematical results concerning particular
Fourier transforms related to the Laplace operator and covariance functions of two-
dimensional isotropic random fields. These results may be useful also in other contexts:
eqns (145), (146), (152), (172), (180), (193), (195), (203), (208).
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APPENDIX |
Inversion of Fouricr transform
With « and B being non-negative integers such that 0 = a < 4B the inverse Fourier transform of

.. wfwi® N .
I'l...p) (W, wa) = %ﬁ’ fl’“-'-fl + w3) (140)
(w] + wi)”

is given by

F(..‘ut (X, N2)

A A QP L
. wywr P 2 Ve
Ilm dw:j _.‘_,ﬂ p(wi + w:‘) cll\lwl (D dw|
aex J -2 A {wi + w3)”

A wy \* ! "
I.m f 3 ( - ) (TN ’f —
Alw [ Alw | | wa] ¢ do: o+ )

plwitl + N eIl dy

fh | wy ] oY et Jo, ]I -—“—‘l—"—ﬁlwl(l + 'Y
- fo ] U G St

et Jami | o dut

x

+

X

1 n N
lim [f —-“——d,,jhlw“}lw:“ + “l‘)] efurme g

Parey o+ )
L ) IR 141
—_— - 2 2 SIRNT R . ( }
+J‘-‘“+”:):uduj_hlw|p|w(l+nllc dw]
Assume that the nonnegative function p satisfies the condition

Ppo’) = Kminjw ' e 7% (142)

for some positive constants K and ¢. We then have

| J’A I"" I F‘)lwl (l + ”Z)] cﬂ!:lul‘llw dw
Y

LY
SZJ; w plw’ (1 + %)) dw

»

INTT R
-:---—'---—A (I + ’)u*j Viea
= )y 1+
|+ 12 o w ' do

A
+ (1 + u:)"’:f w""dw]

ATy
K 2K (143)
T e—— - AV 2) 7] € ——
e 2T VI < T

for A > 1. Thus Lebesgue’s dominated convergence principle, ([9]. p. 262). shows that we have

Fiop (X1, x2)

! u" > 2 5
= — Al s + O+ 4iv) o
fn(l " ",)mduJ'_‘leplw(l w)e dw

| "41;—" d x . zl 2 i|,||044l!iwd
+f-lmn e lpleth + ) e ®

x !’l' = . .
=2 = . Ml + 1) eftvr+ 1 (144)
2. 07wy v Re Un w plol + e dw]

in which Re|[:] means *‘real part.’* The last step follows by applying substitutions in the last double integral
such that the integration parameters become /11 and wn in place of # and w respectively. We write the result
on the form

= «

"
F(u,”p(.\'l. ,\':) = 2"1 . _(l + '_,1,2—B+ 1 ull. X X:) dll
S e v X)) + WP, X2l 8y)
= -f Ty du
- (1 + «)

(145)
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in which
> . X2+ X
. x.x2) = Re f Bty e (———-—-—-)d] (146)
Wlu, x), x2) [nzp(z)xp lmt 1
Since, egn (63).
plat + a3) = f“ f.m Pt + wi) e 0 duy duws (147}

we have by reduction in polar coordinates that

pl0) = f . f* Mo + wi) dw) dos = Zw_L v plrf) do < =, {148)

By comparison with egn (146} this shows that

0
W, 6,0) = 20 (149)
2
giving
B LUl -
Fami0,0) = el B TR TR du. (150
For p(0) = 1, the relevant values of F. g, (0, 0) are given in the following table:
o 0 2 4 6 8 odd
128F .. 48 i6 48 0
128F 0.2 35 5 3 5 35 0
Furthermore it follows from eqns (146) and (149) that
| lu. x1, x2) | = pl0)2m. (151

It is worth noting the special case « = B = 0. The inverse transform of Fiom (@1, w2} = plwl + wd)is
p(x} + x3). Thus we have the representation, eqn (145),

[ Wy ax, b
pu) = 2 WD g, (152)

valid for all a, b such that ¢ + §* = 1.

We will make use of the so-called Riemann-Lebesgue theorem of the theory of Fourier series and integrals
({10}, p. 11). It states that

f fw e™Mdr—0 (153)

for A — = for any real function f(x) for which f§ f(x) dx < =, By this theorem it follows from the convergence
of the integral of eqn (148} that

Y, x>0 for xi+ x3o =, (154)

Since | ¢ | = p(0)2m, it follows by applying the dominated convergence principle on the integral of eqn (145)
that

Fap (i, x2)— 0 for x} +4— = {155)

APPENDIX 2
Some asymptotic results
We will next study the function
25 = f_: Riutau + bY Wu, as, bs) du (156)

where R{u) is a bounded rational function of « such that the integral is convergent for all s€ R, apd a. b
are given constants for which *> + b* = 1. In particular we are interested in the asymptotic behavior of

L
L—IZL (L - 5) gls) ds a7
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as L — = Since | ¢ | = p(0)2m < x we can commute the order of integration in the following integral

. - L
L (L — 5)gls)ds = f R(tXau + b)? [L (L — s)u. as. bs) d.r] du (158)
and due to eqn (148) also in
1 = .
j; (L = $)dlu, as, bs) ds = L v ple?) [J; (L — &) cos (kus) ds] du (159)
where
an + b
k = ——=. (160)
VI +

Integration by parts yields

L - .7 1 .
J; (L — s)cos (hvs) ds = l_(C_:z_S')ZL/\ﬂ = ai—)z sin? (%v) (161
such that
. kLwv\?
[t 1> sip =
Z-ZJ; (L — s) blu, as, bs) ds = EJ; v plr?) L dv=0 (162)
7

since p(v?) is nonnegative everywhere. We will restrict the possible convariance functions to be considered
herein to those for which p(x?) = 0 for all x. This has the consequence that

-

Bt + wd) = §0) = (5';) (163)
since
o] + w3) = (:2-11-‘_)2 f: J:: plxi + x3) e it dyy dy, (164)
and since p is normalized such that
Jo 7 eud 4 b andes = 1, (165)
Consistent with this we assume that
p?) = G;) min{l, v=2-¢} (166)

i.e. a condition with which the assumption of eqn (142) is consistent. By an obvious evaluation of the trigo-
nometric factor in the integrand on the right side of egn (162) we first get

Os—!-fl'(L - $)Wu, a bs)dvslfx r‘(:z)min{l -—4—}dv

Lo S as, DS)OY =3 Jo TP " kLop
-1 fh p(v?) d +-—4—f‘1'(2 do| 61
=31 Jy veEIdv LR b vpv) 1 (

in which 3 = 2/ [ k| L. Depending on whether & < 1 or 8 > | we next get by using eqn (166)

L
#J; (L = 5) Wu, as, bs) ds

5 i =
1 fz’dx'+52fd—v+52f—?-:-’;
< — 0 s v LI T
8n? ‘
3 x
f vdv + Szf —?1;):
0 s v

1
+ log - d=1
582 1 og5 for
82

1 for 8> 1

=§;-z-(-lmmax{l +IogL%L£,I}. (168)
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1t follows from egns (158), (160}, (162) and {168) that

1t
l b (L — ) gls) ds

Jaw + b}

l - b
sm—:f_xlmu)l(l +u )max{l + jog (2\/_._.1) + log L. l} du

i = . faw + b
SzﬂlLt{f.z‘R(“”“ +u}max{l +log(2m) }du

+ f; [ RGN (1 + &%) du log L]

{ogl. >

A 2 log L
x:s (f IR(u)l(I+u)du) = (169)

where the last expression is valid asymptotically for large L. This result shows that

L
m A (L — s)gts) ds (170}

is bounded for log L > 1, say. We will next show that it has a finite limit for L — =, We need the following

Lemma, Let f be a nonnegative real function defined on {0, =[. If f is continuous at zero and
f pE LR a7
5 X

for any positive 8, and if ¢ is a positive constant, then

c Ax

x Iog e ) = 1f(0). 72)

Ilm f flx) —w———

Proof. Forane > 0choose 3 > 0 such that fi0) — e = flx) = fi0) + e forall x € {0, 8]. Fora > o/
& we then have

sin® Av [ (M)’
0 f( )xlog (M)dx ,\ iog (A¢)

/n
L x fiarde  (fiy + e)‘g

= = [t} 173
log (Ac) log (\¢) - 73

A2

for A — =, Since

A
(2
f” j_:{_,flcos: Av + sinfax {s (FO) + e)} ” {f(()} + €

(174)
L log (A\c) = (fl0) - log (A¢) floy — ¢
and
sin® Ax I = fx)
-
f W o S igooh = &7 (73)
we only need to show that
s 22y — gin?
f fix) cos® Ax — sin de_’o (176)
X log (Ac)

for A = = in order to complete the proof of eqgn (172). For A > 3n/25 we get

LN

= L; ff:) (sm A (x + —) - sin? )
3 fix) ( )

...f s]n xx dx + —‘) sin® Ax dx

A X In/IN
X - —

2)\

.3
f f(x) =— (cos® Ax —sin® Ax) dx

]
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s -
= f flo) + ¢ - fl0) — e dv = f(0) logz +e {Ing (5}\) :l
3 2 ™

1T ) ki1 X
A
5 + 5
z —f O *ey - ~(fl0) + € log (—A) am
nA X ™

After division by log (A¢) the upper bound approaches 2e while the lower bound approaches zero for A —
=, Since € is arbitrary. the lemma follows.

After multiplication of eqn (162) by L*/log L we may apply the lemma to get

f (L — ) dlu, as, bs) ds 2 5Gr) . 2 do p(()) 1
- =13 " — — =
o, 2 Jo P v log L T el

for L. — =, By using the inequality of eqn (168} it is seen that an absolute bound to the integrand of eqn
(158) after division by log L is

log I (178)

L ) +
(—2;; JRUS | (] + o) max {2 + log (;;m\/.]_—f_%) !} (7M™
Since this function of « is integrable from — = to =, the dominated convergence principle finally shows that
!h_r&mﬂ (L - s)f R} (au + bY W, as, bs) du ds = G }.f Rug (1 + o) du. (180

By removal of the factor (ae + b)° in the integrand of eqn (156} we get the function
his) = f RGo) Wi, as, bs) du (I81)

for which the integral of eqn (156) with & in place of g behaves asymptotically quite differently than stated
by eqn (180}, except for @ = 0, of course. In eqn (181). Rt«} is a bounded rational function of order of
magnitude (V) for | u | — =,

The calculation up to eq (162} is the same giving

l 1
ZL (L - s) his) ds

L = - sin = ol
=3 [ﬂtﬁfﬂ') j; v pler) Tl H
2 i
. kLv2 T
. sin =~
=3 fowd| L [ v R | e | (182)
2 .
where the interchange of order of integration is admissible since the function
. kL2
sin —=
G, v) = R(w) KL (183)
2
is absolutely bounded by a constant and eqn (148) is valid, and further since
f:; | G, v) | du = f“_x | R(u) | du < =, (184)

The reader is referred to ([4], pp. 66-70), e.g. for the proof of the sufficiency of these conditions.
The inner integral is by the substitution y = (au + bYV| + 4 changed into

sin (aue + B)Lon:
* 2V + 4
Lo [ Ruo (au + bLv
PAVAI

-8 N2 foim Lol o\ 2
= lim ij‘ R(m)“ + i) (su: i}Lz) dy]
rlo - a — by iyLv

u (0 + ud)¥? [sin ,‘,)'Lzr)z
+ le [va |~-5R(":) P ( Lo dy (185)

du
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in which u;, u, are the functions of y defined by solving the substitution with respect to y. The first function
corresponds to —» < u < a/b while the second function corresponds to a/b < 1 < x.
Since

1-& 1 + 2332 ath
j LRG| drm)” dy = f | Rtw) | du (186)
e a |a = buy | >
1~ 1+ 42 =
f | Ry | 222 g < f LR | du (187)
voa | a - Im-_.‘ ath
and
J-I -&
i 2 = /e 2
L (5'-“‘—’1‘3) dy = 2] (s—'"—i‘) dr = 2m (188)
ivLv -\ X

[

we see that the integral of eqn (185) has the absolute bound
- J'_’ | Ry | d. (189)

Since 3 p(v?) dv < e, eqn (166), it follows from the dominated convergence principle that we may pass to
the limit L — = behind the first integral of eqn (182). We may now write the left side of eqn (185) as the
sum of the integral

.i. Jouz(l-b) " I+ u? in? ((au + b)Li’) (190)
Ly Jnu-w (au + by? 2V +

and the two integrals in the brackets on the right side of eqn (185). The positive number 8 is selected so
small that ~b/a is not in the closed interval from w,(1 — 8) to w2(1 = ). H is obvious that the integral of
eqn {190) approaches zero for L — ». The same applies to the integral in the second bracket on the right
side of eqn (185) since the interval of integration does not contain y = 0. Of the same reason the limit of
the integral of the first integral is the same as

¥ 1 + 2332 H g\ 2
lim [vaf R(u.)( ) (sm i"Ll) d)'-l (191
e vy a — bu, ivLv )

for any arbitrary sufficiently small positive value of y. Since the integrand is a continuous function of v for
y = 0, it follows that the limit is

23372 L2 H 2 b
R0y SO f’ (ﬂ'—f) dv = 2R (—-) L (192)

d = biy(0) p-w J-yr2 \ x a) @t

except for v = 0, in which case the limit is zero. Finally, applying this in eqn (182) we get the result

1~ L

1. = ™1 .
lim -I— f (L — %) f Ru) Uu, as, bs) du ds = wR (——) - f pe=) dv (193)
o -x a/ a* o

valid for ¢« > 0. For ¢ = 0 it follows by use of eqn (180) that the limit is zero since (log LY/L — 0 for L —
XK

. By application of eqn (193) on eqn (152) we get
L N . o L,
lim ZL (L - x)pe®)dy = 217J; M) do. (194)

1 e

Since f3 x p(x®) dv = /271, eqn (165), this gives the formula

L’ o) dx = 2m J;’ p(?) du. (195)

APPENDIX 3

Two specific examples
The Gaussian type covariance function, egn (66),

1 1
2y o e =52 196
p(x%) 2_" exp [ 2 X ] (196)

has the transform

1\? |
2002y = | e —_——? (197
p(u)—(z)exp[ 21] )
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giving, eqn (146),
I : = —xU2 ~ivx
W, x5, x2) = (2") Re [J; xe : de

with

Xz + Xl

Vi + ut

The integral of eqn (198) is
2 f° x e EEIV gy
0
Contour integration gives
j:: e xto¥2 gy o j:”y z c—zm dz - iy J::Hy e~zz/2 dz
= [—e Py — iy [- [emars [emma dx]

Y k4
= a2l _ 2 4y o -
4 yj;e de 1y\/;.

Thus the real part of the integral is
1
1 -y j; e Y- gy

such that eqn (198) becomes

. _ (x2 + xu¥ ! L1 -9
Qmy Yl xy, x2) = | T L exp [—%(x; + xu) 17 “2} dv

It seems not to be easy to reduce this formula further.
Another example of a covariance function is the Cauchy type, egn (67).

2 - l 210 A2
”(")_-2—-—““+'\l

with the transform

2

fle) = (%)‘expi— Jvil.

In this case eqn (146) becomes

1y ” ‘
WK, Xy, X2) = (E-r_r) Re [L xe i dr]

in which the integral is

--—l—--fx~e“~'d--(' ..,'_‘.)2_ i __\.2 iy 2y
(+ "y)l o © - 1+ }.2 + .‘.2)2 o+ }'2)2
such that eqn (206) becomes

. x; + xa)

N I+

& v A . -3 -——-an-——.—-—!’
(27)° dlu, x4, x2) (1 N s xm)g)

I+
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(200)

(201)

(202)

(203)
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207}

(208)



